
CISC 3130
Project 2

Simulated Shopping

Introduction
Te online bookstore has failed. Te basement of Boylan is being guted to make room for BCbarter,
a store selling artisanal textbooks; quirky, one-of-a-kind ofce and school supplies, fair trade hoodies,
and a wide range of organic junk food. Like many retail stores, they are interested in optimizing the
number of points of sale in the store: customers should spend as litle time waiting as possible, but
their cashiers also should not spend too much time idle.

Te store management has some ideas about how the points of sale should be organized, and they
also have data from other franchises, along with an analysis of local demographics, that gives them
some starting expectations about how their customers will behave. Rather than experiment with
diferent confgurations in the store itself (which will take a lot of time and extra energy), they’ve
asked us to run some simulations to help them decide how to design the store initially.

Background
What determines how long you wait at a cash register? Mainly, it’s the number of people in line
ahead of you, as well as the number of items they’re purchasing, the speed of the cashier, and the
time required to complete payment. What determines how many people are in line ahead of you?
Fundamentally, it’s a question of whether people are geting in line faster than they can be rung up—
if it takes, say, 2 minutes to ring someone up, but someone gets in line every 1 minute, afer a few
minutes there’s going to be a bit of a line.

Of course, we can’t predict exactly when each customer is going to enter the store, or how many
things they’re going to want to buy, and so on. We may know something about the average behavior
of customers, though. So in our simulation, we’re going use a combination of simplifying
assumptions and random numbers.

In particular, we’re to make the following assumptions (based on data that BCbarter has collected):

• Each item being purchased requires 9 seconds of handling (to take it out of the basket, scan it,
and bag it). Tat’s an average time, of course, but there’s not a lot of variance, so we’ll just use
9 seconds. Similarly, we’ll assume it always takes 60 seconds to process payment.

• On average, each shopper buys 6 items. But obviously there’s going to be a lot of variance in
that—a lot of people will be geting 4-8 items, a few 1 (or even 0—realizing in line that they
forgot their wallet at home), and a few 15 or more. Probabilistically, the number of items
follows a Poisson distribution with mean 6. (Here is a graph of the Poisson distribution with
mean 5.) You don’t need to worry about the technical details, but later we’ll be using methods
that produce random numbers distributed in this way.

• At busy times, a shopper gets in line on average every 30 seconds. Put another way, the odds
that someone will arrive during any particular second are 1/30. Again, there’s going to be
wide variance; the time between shoppers follows an exponential distribution with rate 1/30.
(Here is a graph of a few exponential distributions with diferent rates—note that as the rate
increases, shorter inter-arrival times become more likely.) During slow times, shoppers get in

http://statistics.wdfiles.com/local--files/ch6/Poiss.png
http://www.boost.org/doc/libs/1_54_0/libs/math/doc/graphs/exponential_pdf.png

line every 120 seconds on average.

Based on this initial data, the store management plans to set up three cash registers, though they’re
not sure how to designate them or staf them. Tey have 4 basic ideas in mind that they want to run
simulations on:

1. Te “express” model. One cash register will be reserved for customers with 5 items or less.
During busy times, they will add either 1 or 2 registers for people with more than 5 items.
During slow times, they will either just have one register open for everyone, or one express
register and one “regular” register. (We’ll assume that no-one lines up in the wrong line, and
when they have a choice, they’ll pick the shorter of two lines.) We should simulate all 4
variants of the express model.

2. Te “loyalty” model. One cash register will be reserved for customers who have joined the
BCbarter loyalty program. As with the “express” model, during busy times, they’ll add 1 or 2
registers for non-loyalty customers; during slow times they might have one general register
or one of each.

3. Te “superpriority” model. One line forms, and when a register becomes available, the person
in line with the fewest items goes next. If there’s a tie, customers in the loyalty program have
preference; if there’s still a tie, the customer closest to the front of the line goes. During slow
times, there will be 1 or 2 registers; during busy times, there will be 2 or 3.

4. Te “uniform” model. All registers are open to everyone; customers will pick the one with the
shortest line. Slow times will have 1 or 2 registers; busy times 2 or 3.

Implementation
You will need to write several classes to implement this set of simulations!

Te objects that actually arrive in line are Carts. A Cart has a number of items, an arrival time
(when the cart enters a line), and a departure time (when they leave the store afer paying). If the
Cart belongs to a loyal customer, it also has a Customer feld. Te Cart class will also need
methods to calculate/report certain values needed for the simulation. For the purposes of our study,
we will assume that half of the visitors to the store are loyal customers. (Note: in general, we expect
some loyal customers to visit the store multiple times during each simulation.)

A Customer is similar to a Shopper from Project 0. Each Customer object has a loyalty number (a
value between 0 and 9999), a count of many items the customer has purchased at the store, a count of
how many times the customer has been to a cash register, and the total time the customer has spent
waiting in line. Like Cart, Customer will need methods to calculate/report certain values needed for
the simulation.

A cash register will be represented by a Register object. Each Register object will include a
reference to the line that “feeds” it, and will track the number of Carts it has processed, and the
minimum, maximum, and average wait times (i.e. the time between entering the line and beginning
the checkout process. Te Register class will have a processNextCart() method (which will
cause it to take the next Cart from its line) and a getNextAvailableTime() method, which will
return the time it will be available to process the next cart.

A line in the store will be represented by a Line object. Tis is basically a queue of Cart objects.
Most Lines can use the queue class from the STL, but the “superpriority” Line will need to use
priority_queue.

For customers in the loyalty program, we can track their experience over several simulations (this is
part of the value of having a loyalty program!) Te CustomerHistory class should allow you to
record and access information about your loyal customers. In particular, use the unordered_map
class template to track your loyal customers. Te key values are the loyalty program membership
number; the mapped values are Customer objects.

Finally, a Store object represents one confguration of a store (a collection of Lines, as well as the
way those lines are used to serve customers). Tese objects will essentially manage the simulations.
Te design of the Store class is up to you—you'll need to be able to start a simulation, collect the data
from a simulation, and set necessary parameters for the simulation.

What To Do
For each variant of the four store models (but see note about extra credit below), you will run 4-hour
simulations of slow and busy periods. Tat is, run a simulation of a 4-hour slow period, and a
simulation of a 4-hour busy period. Do this 1000 times for each kind of period—each simulation will
start with empty lines and will be “seeded” with a diferent random number. For each variant, and for
the slow/busy times your program will report:

1. Average customer wait time
2. Maximum customer wait time
3. Maximum line length
4. Total idle time (no customers waiting or paying) for all lines

In addition, for your loyal customers, report the average and maximum wait time per item purchased.
(Tat is, calculate each customer's wait time per item purchased, and report the average and
maximum across all customers.) Tis report should include both the busy and slow simulations for
the store confguration.

How To Do It
Tere are several things you need to do this assignment. First, you need to get (pseudo)random
values with the appropriate characteristics. Also, you must be able to run several simulations with
diferent sequences of random values, which means you need to seed your random number generator
with diferent values. To do that, we'll use the current time.

To get numbers from a Poisson distribution with (say) mean 6, declare:

unsigned seed =
std::chrono::system_clock::now().time_since_epoch().count();

std::default_random_engine generator(seed);
std::poisson_distribution<int> distribution(6);

and then call distribution(generator) to get a random int value.

Similarly for an exponential distribution with (say) rate 1/30,

unsigned seed =
std::chrono::system_clock::now().time_since_epoch().count();

std::default_random_engine generator (seed);

std::exponential_distribution<double> distribution (1/30.0);

Note that you can “create” your customers before the simulation starts, which will make managing
the simulation prety easy.

Another challenge is keeping track of time during a simulation. How to do this? Obviously you don't
want to do “in real time”—that would take quite a while. You might be tempted to have a “second
counter” that you increment, then see if anything happens (a customer arrives, or departs), then
increment, etc. But that isn't very efcient—most seconds are not going to have any activity. So
instead, start your simulation clock at 0, then fgure out what the next thing to happen will be—at the
beginning, the next thing will be a customer geting in line; later on, it could also be a customer
completing payment. So advance your clock to that time (say, 37 seconds), process that activity, then
identify what's going to happen next. Tat way, your “clock” will only take on “interesting” values.
(Note that you'll need a mechanism for transforming (for example) the fact that customer n arrives 43
seconds afer customer n-1 into the fact that customer n arrives at second 853.)

What to Turn In
Email me a zipfle named familyname_givenname.zip. (So I would send dexter_scott.zip). You
may also send a .tgz fle if you’re using Unix/Linux. Do not send a RAR or other kind of compressed
fle; those will get a grade of 0 points. Make sure the subject of your email is CISC 3130 Project 2. Te
zipfle should contain:

• Your makefle, which produces an executable fle called projec2

• All .h and .cpp fles in your project.

• Te output from a run of your program, named familyname_givenname.out.

I should be able to extract fles from your zip, run make, and run project2. If any part of that fails,
you will not earn full points.

On Style

As usual, your code should follow best-practice style guidelines—probably Google’s C++ Style Guide
is the most comprehensive. Pay particular atention to the sections on Naming, Comments, and
Formating. If I have to work hard to fgure out what you’re trying to do, you will not earn full
points.

On Full and Extra Credit

For full credit, run the simulations for all variants of store model 4 (“uniform). For some extra credit,
also simulate models 1 and 2. (You may need to update your object-oriented design to accommodate
diferent kinds of store confgurations.) For more extra credit, also simulate model 3. Note that this
will involve function pointers/objects along the lines of project 1.

In your project-submission email, indicate whether you are submiting for full credit, some extra, or
more extra. If you don't indicate you are submiting for extra credit, you will not receive any,
regardless of the status of your code.

https://google.github.io/styleguide/cppguide.html
https://google.github.io/styleguide/cppguide.html
https://google.github.io/styleguide/cppguide.html

	Introduction
	Background
	Implementation
	What To Do
	How To Do It
	What to Turn In
	On Style

