
CISC 3130
Project 1

Lists like Lisp

Introduction
The programming language Lisp (originally called LISP) is nearly 60 years old (the second-oldest
high-level language that we’re still using). Originally, its name was an abbreviation for “LISt
Processor”—in the early forms of the language, linked lists were its primary composite data type (just
like arrays and structures are the primary composite data types in C++). Tese days, variants of Lisp
(like Scheme and Clojure) are a bit more complex. Scheme is used as the introductory programming
language at many colleges; Clojure has substantial adoption in industry; and everyone’s favorite
editor is writen (almost entirely) in its own dialect, E macs L isp. In this project, you’ll add some
behaviors to the book’s SLList to make that class act a bit more like Lisp lists.

Note: you don’t need to read/understand any of the Wikipedia pages linked above to do this project;
they’re just there for your information/curiosity.

Implementation
First, make a copy of the book’s SLList fles and rename them (and the class) to LispList. Be sure
to leave a comment in both fles crediting the author and linking to the code source. Your code
should not belong to the ods namespace, so remove those directives. (And be sure to fx the Node
constructor so that the value is set to x0, not 0!)

Before we add any exciting new behaviors, we need to be able copy lists (or parts of lists). First, write
a protected (helper) method copy(Node *n) which returns a new LispList that is a copy of the
“sublist” that starts at n (and ends at NULL). Use this helper method to write a LispList copy
constructor and overloaded assignment operator (operator=).

Lisp provides two basic operations on lists: frst and rest. frst returns the value of the frst element
in the list; rest returns a list containing all the values except the frst (that is, the rest of the list). Note
that from this description, you can’t tell whether the return value of rest should contain new nodes
or just use existing nodes. For this implementation, do not create any new nodes.

Lisp provides an append operation that returns a new list containing the elements of two other lists.
So append applied to (1, 2) and (3, 4) would return (1, 2, 3, 4). How many new nodes should append
create, if any? It can’t use the original nodes from the frst argument (why not?), but it can use the
original nodes from the second argument:

https://en.wikipedia.org/wiki/Lisp_(programming_language)
https://en.wikipedia.org/wiki/Emacs_Lisp
https://en.wikipedia.org/wiki/Emacs_Lisp
https://en.wikipedia.org/wiki/Emacs_Lisp
https://en.wikipedia.org/wiki/Emacs_Lisp
https://en.wikipedia.org/wiki/Clojure
https://en.wikipedia.org/wiki/Scheme_(programming_language)#Usage
http://www.gigamonkeys.com/book/they-called-it-lisp-for-a-reason-list-processing.html

So, implement that operation.

Finally, the map operation applies a function to each element of the list and returns a new list
containing the return values. So applying map with the x2 function to (1, 2, 3, 4) would result in (1, 4,
9, 16). Or, applying map with std::string::size() to (“dog”, “cat”, “elephant”) would result in
(3, 3, 8).

Implement this operation! But this is going to take some C++ techniques, discussed below.

Finally, implement a print() method that prints the contents of a list to cout. Use the syntax I’ve
been using, where the list is enclosed in parentheses and the elements are separated by a comma and
a space. (You don’t need to print out the quotes around strings, so (dog, cat, elephant) is fne.)
Be sure the last element is followed directly by parentheses!

Your Main Program
Your main program will conduct some limited testing of your LispList behaviors. It should expect
input from cin like this (the stuf afer // are my descriptions; it’s not part of the input!):

4 // a positive int value
dog // then a batch of std::string values of that size
cat
elephant
zebra
3 // a non-negative number of std::strings to read (another batch of strings)
Brooklyn
Qeens
Manhatan

You should store those 3 sets of input in 3 LispLists, of course.

Te program’s output comes in two sections. First, for each of the strings in the frst batch, output
the initial substring with length given by the initial int input. (Of course, do this with the map()
method.) In this example, the output would be:

dog
cat
elep
zebr

Ten, using the append() method and the map() method, output the size of all the strings provided
in input. In this example, the output would be:

3
3
8
5
8
6

9

Tere should be no blank lines in your output (unless one of the strings was empty).

What to Turn In
Email me a zipfle named familyname_givenname.zip. (So I would send dexter_scott.zip). You
may also send a .tgz fle if you’re using Unix/Linux. Do not send a RAR or other kind of compressed
fle; those will get a grade of 0 points. Make sure the subject of your email is CISC 3130 Project 1.Te
zipfle should contain:

• Your makefle, which produces an executable fle called project1

• All .h and .cpp fles in your project.

• Two textfles containing test input and the resulting output, named

familyname_givenname.in and familyname_givenname.out.

I should be able to extract fles from your zip, run make, and run project1. If any part of that fails,
you will not earn full points. I will also be providing my own test data: if your program does not
produce the expected output, you will not earn full points. I will also be compiling your LispList class
against my own main program and running additional tests (e.g. of your methods, using other types
of data). If your program does not compile, run, and produce the expected output, you will not earn
full points.

On Style

You do not need to change the style of the code from the book. But your code should follow best-
practice style guidelines—probably Google’s C++ Style Guide is the most comprehensive. Pay
particular atention to the sections on Naming, Comments, and Formating. If I have to work hard to
fgure out what you’re trying to do, you will not earn full points.

Implementing the map Method

Te idea of passing a function as a parameter to another function is a prety old one, dating back at
least to the C language. Te basic idea is that a function is really just a memory location—the address
in memory where the function’s machine code is stored. So passing a “function pointer” isn’t much
diferent from passing any other kind of pointer. In C++, this idea has developed along with the
facilities for generic and polymorphic code. In particular, the functional library of the STL
includes a templated class function that can represent prety much anything that can be called like
a function. For example, if I’ve declared a function

void print_num(int i) { std::cout << i << ‘\n’; }

then I can use that to initialize a function object:

http://en.cppreference.com/w/cpp/utility/functional/function
https://google.github.io/styleguide/cppguide.html
https://google.github.io/styleguide/cppguide.html
https://google.github.io/styleguide/cppguide.html

std::function<void(int)> f_display = print_num;

where the void indicates the return type of the function, and the types listed in the () indicate the
parameter types of the function. Ten I can use f_display just like a “regular” function:

f_display(-9);

Of course, this is not a very interesting application of this idea! More interesting is to write a
function that can take a function parameter:

void foo(std::function<int(int)> func) {
for (i=0; i<100; i++)

std::cout << func(i) << std::endl;
}
Ten when you call foo(), you can pass the right kind of function object (just make sure you
actually pass a function object—like f_display above—rather than the name of an “actual”
function—like print_num above—or else the compiler will be grumpy).

Te great thing for this project is that the types inside the function<> can be templated; you'll
probably have to think a litle about how to use this fact in your code. In general (ignore templates),
the prototype for map should be

SLList map(function f, SLList l)

	Introduction
	Implementation
	Your Main Program
	What to Turn In
	On Style

