
CISC 3130
Project 0

A Priority QQueuQue

Introduction
Recall from Section 1.2.1 that a priority queue uses a queuing discipline which always removes the
“smallest element” from the queue. Tat is, the two operations are add(x) and removeMin(). In
this project, you’ll implement and work with a simple priority queue.

ImplQuemQuentation
Using the book’s ArrayQueue defnition, derive two versions of a priority queue. Note that there are
essentially two ways (using an array-based structure) to achieve the “remove smallest” operation. Te
frst is to make sure the queue is always sorted, so that the smallest element is always at the front.
Te second is to leave the queue in its “natural” arrival order and search for the smallest element
every time removeMin() is called. Implement both of these—call the frst subclass
PriorityQueueSort and the second PriorityQueueSearch. Assume that the element type, T,
has the < operator defned. (Be sure your implementations do the sensible thing in the case where
two elements have the “smallest” priority—which one should get removed frst?)

Timing
To get a sense of the timing, let’s just work with int values between 1 and 10, as follows:

1. Generate 5000 random values in this range (see below) and store them in an array.

2. Time the process to add() them all to PriorityQueueSort

3. Time the process to add() them all to PriorityQueueSearch

4. Time the process to removeMin() all 5000 values from PriorityQueueSort

5. Time the process to removeMin() all 5000 values from PriorityQueueSearch

Before you run the code, you should have a sense of the relationships among the timings for 2–5. Are
any of those steps going to take more time, or less, than the others?

To generate random numbers between 1 and 10, use the random library (be sure to #include
<random>):

// produces random #s between 0 and 1
std::default_random_engine generator;

// converts those to equally-likely ints between 1 and 10
std::uniform_int_distribution<int> distribution(1,10);

int priority = distribution(generator);

Toward a Simulation
Of course, we don’t put only priorities in the queue; we put in objects that represent (for example)
hospital patients, or retail shoppers, or computing processes—each of these have a priority that we
use to decide which gets processed next.

Defne a class Shopper that includes felds long int loyalty, int cartSize, and int
priority. Provide a default constructor that gives loyalty and cartSize random values, and
priority 0. Provide an int constructor that takes a priority value and randomizes loyalty and
cartSize. Provided an overloaded operator< for Shopper objects that compares based on the
value of priority. (You might want to overload operator> and some of the other relational
operators, too.)

Adapt your code from the “Timing” section to work on 5000 Shopper objects rather than 5000 int
values.

Output
Your main program should produce exactly 8 lines of output, like this:

priority queue sort add ints: xxx ms
priority queue search add ints: xxx ms
priority queue sort remove ints: xxx ms
priority queue search remove ints: xxx ms
priority queue sort add shoppers: xxx ms
priority queue search add shoppers: xxx ms
priority queue sort remove shoppers: xxx ms
priority queue search remove shoppers: xxx ms

What to Turn In
Email me a zipfle named familyname_givenname.zip. (So I would send dexter_scott.zip). You
may also send a .tgz fle if you’re using Unix/Linux. Do not send a RAR or other kind of compressed
fle; those will get a grade of 0 points. Make sure the subject of your email is CISC 3130 Project 0.Te
zipfle should contain:

• Your makefle, which produces an executable fle called project0

• All .h and .cpp fles in your project (including the code from the book).

• A textfle containing 8 lines and 11 columns that records the results of running your program
10 times.. Each of the frst 10 columns should contain the output timings from one run of the
program; the 11th column should contain the average of the frst 10 columns.

All fles, excluding the source fles from the book, must contain your name at the top.

I should be able to extract fles from your zip, run make, and run project0. If any part of that fails,
you will not earn full points.

On Style

You do not need to change the style of the code from the book. But your code should follow best-
practice style guidelines—probably Google’s C++ Style Guide is the most comprehensive. Pay
particular atention to the sections on Naming, Comments, and Formating. If I have to work hard to
fgure out what you’re trying to do, you will not earn full points.

https://google.github.io/styleguide/cppguide.html
https://google.github.io/styleguide/cppguide.html
https://google.github.io/styleguide/cppguide.html

	Introduction
	Implementation
	Timing
	Toward a Simulation
	Output
	What to Turn In
	On Style

