
CISC 3130 Midterm Review Guide

Readings
You are responsible for the following material in Open Data Structures:

• Chapter 1, excluding 1.4, and with only a superfcial coverage of 1.3.
• Chapter 2, excluding 2.6.
• Chapter 3, excluding 3.3.5.

Te general discussion of STL containers at htp://www.cplusplus.com/reference/stl/, as well as the
general behaviors of the stack, queue, deque, forward_list, and list STL containers.

Tose parts of C++ Annotations we’ve drawn from: 12.1, 12.2, 12.4, 18.2.

Study Tactics
Work as many exercises from the book as you can, perhaps excluding 2.9–2.12 and 3.16–3.19.
Review all the questions I’ve asked you in this class (see Application Activities appended below).
Review all code from exercises and project assignments.
Re-read readings now that you’ve worked with ideas in lecture/lab.

Main Topics

C++ Concepts

I expect you to be able to read and write C++ code, including code that uses templates and public
inheritance.

I expect you to be able to read and write code that uses the STL, if I provide an “API” listing of
containers and methods.

Data Structures Concepts

You should be able to discuss the List, Stack, Qeue, and Deque interfaces from the book, as well as
their array-based and linked-list implementations. You should be able to analyze/evaluate new
approaches to implementing these data structures.

You should be able to use array-based and linked-list techniques to implement operations on the data
structures we’ve studied.

You should be able to analyze simple code to determine whether it’s O(1), O(n), etc. You should know
how the words “constant,” “linear,” etc apply to big-O classes. You should be able to compare
algorithms from diferent big-O classes.

Exam Structure, Roughly
50%: short-answer/multiple-choice
30%: writing code
20%: analyzing code

http://www.cplusplus.com/reference/stl/

1. What two operations are supported by every data structure discussed in
Chapter 1?

a) get and set
b) add and remove
c) read and write
d) initialize and delete
e) print and scan

2. If all these data structures support the same operations, then why do we have
so many diferent ones?

a) Not all data structures have correct behavior.
b) Diferent applications have diferent efciency requirements for diferent

operations.
c) Computer scientists have nothing beter to do.
d) Diferent operating systems organize disk space diferently.
e) All of the above

3. What is the best data structure to use to solve this problem? It should be as
fast as possible and use as litle storage as possible.

Read the input one line at a time and then write the lines out in reverse order, so
that the last input line is printed frst, then the second last input line, and so on.

a) Stack
b) Queue
c) USet
d) SSet

4. What is the best data structure to use to solve this problem? It should be as
fast as possible and use as litle storage as possible.

Read the input one line at a time. At any point afer reading the frst 42 lines, if
some line is blank (i.e., a string of length 0), then output the line that occured 42
lines prior to that one. Tis program should be implemented so that it never
stores more than 43 lines of the input at any given time.

a) Stack
b) Queue
c) USet
d) SSet

5. What is the best data structure to use to solve this problem? It should be as
fast as possible and use as litle storage as possible.

Read the input one line at a time and write each line to the output if it is not a
duplicate of some previous input line. Note that a fle with a lot of duplicate lines
should not require more memory than what is required for the number of unique
lines.

a) Stack
b) Queue
c) USet
d) SSet

6. A List is “fancier” than a Queue—it has more operations. Why doesn’t Queue
have an operation like

get(i) — return the value xi

a) Not every implementation of Queue allows you to access the “ith” element.
b) It’s impossible to write an implementation of Queue that would allow us to

access the ith element
c) Te designers of Queue didn’t realize we might need the ith element.
d) A Queue only cares about the position where elements are added and the

position where elements are removed.

7. Write pseudocode that solves the following problem:

Suppose you have a Stack, s, that supports only the push(x) and pop() operations
(and empty()). Show how, using only a FIFO Queue, q, you can reverse the order
of all elements in s. Tat is, if s starts with 1 at the “botom” followed by 2, 3, up
to 10 on top of the Stack, then afer this code runs, s should have 1 on top and 10
at the botom.

8. Fundamental mathematical question: if log2 k = 8, what is the value of k?

a) 3
b) 16
c) 37
d) 256
e) 1,030,492

9. Suppose this class has 40 students. How many ways could I have picked the 7
people for the frst team?

a) (40 * 39 * 38 * 37 * 36* 35 * 34) / (7 * 6 * 5 * 4 * 3 * 2) = 18,643,560
b) 40 * 7 = 280
c) 407 = 163,840,000,000
d) 40 / 7 = about 6

10. What is the purpose of that weird “Big-Oh” notation?

a) To make sure computer science students don’t have a semester without
sufering.

b) To allow us to compare algorithms without having to know their
implementation details.

c) To allow us to ignore how diferent algorithms behave on small input and
focus on their performance on relatively large input.

d) To allow us to ignore inconsequential diferences between algorithms.
e) All of the above.

11. Based on Figure 1.5 of the book (page 16 in the PDF), would you rather be
running a O(n) algorithm or a O(n log n) algorithm?

a) O(n)
b) O(n log n)
c) Tere’s really no diference.

Bonus 1: Te book says that Big-Oh notation is also called “asymptotic” notation.
Why is it called that?

Bonus 2: Why don’t the “log” values in Big-Oh notation have an explicit base?
(It’s not because the book has declared “log” to mean “log base 2.”)

12. Te book says “Arrays are not very dynamic.” What does the book mean by
that?

a) It is generally inefcient to change the value of an array element.
b) It is generally inefcient to insert a value into an array.
c) Arrays are generally not exciting.
d) Te size of an array does not change.
e) Te memory location of an array does not change.

13. Where is it most efcient to insert a new value into an array containing n
elements? (Assume the capacity of the array is much larger than n.)

a) At index 0.
b) In the vicinity of index n/2.
c) At index n.
d) None of the above.
e) Inserting an element is equally efcient at all locations.

14. When we resize() an array-based data structure, what is the most expensive
part of the process?

a) Calculating the value of 2*n.
b) Allocating the new chunk of memory
c) Copying values into the new chunk of memory
d) De-allocating the old chunk of memory.

15. Te book says that the ArrayStack operations “will run in O(1) amortized
time.” If we loosely understand “amortized” to mean “spread out across” (like
loan payments are spread out across many months), what is being
“amortized” here?

a) Te high cost of resizing the array is spread out across all the add/remove
operations.

b) Te high cost of popping elements is spread out across all the stack
operations

c) Te high cost of removing an element is spread out across all the add
operations (you can’t remove something until afer it’s been added)

d) Te high cost of adding elements near the beginning of the array is spread
out across all the add operations.

16. Consider the infnite array “implementation” for ArrayQueue. Over time, what
will happen to the indices of the elements of the array where the queue is
stored?

a) Tey will tend to stay close to 0.
b) It’s impossible to predict; it depends on the patern of add and remove

operations.
c) Tey will tend to increase.
d) Tey will tend to decrease.

17. Consider the (imaginary) case of an infnite array that’s storing a queue. Te
queue contains 5 elements, j, k, l, m, and n, stored at indexes from 27 to 31, like
this

Now suppose that we’re using a 10-element circular array to store this queue
instead—and the queue hasn’t yet had to contain more than 10 elements. How
would this queue state be represented by that array?

a)
j k l m n
0 1 2 3 4 5 6 7 8 9

 j k l m n

27 28 29 30 31

b)
j k l m n
0 1 2 3 4 5 6 7 8 9

c)
 j k l m n
0 1 2 3 4 5 6 7 8 9

d)
m n j k l
0 1 2 3 4 5 6 7 8 9

e)
 j k l m n
0 1 2 3 4 5 6 7 8 9

18. What’s a deque?

a) It’s a European term for a “deck,” like a deck of cards.
b) It’s a limited form of queue that only allows remove() operations (which are called “de-queue” for

queues)
c) It stands for double-ended queue.
d) Pronounced “duck-whee,” it’s a device like a roller-coaster that is used to entertain the ducks and geese

in Central Park during the winter, thereby greatly reducing depression among quasidomesticated
poultry.

19. What’s the big efciency challenge with an array-based deque?

a) Having “two ends” makes geting and seting element values much less efcient.
b) Having “two ends” makes resizing more difcult and less efcient.
c) Having “two ends” means there are four specifc operations that need to be efcient.
d) Having “two ends” is a nightmare—All of the above!

20. So the ArrayDeque combines the circular array idea of ArrayQueue with the element-shifing idea of
ArrayStack–a bit more complicated than the previous two structures. What is the impact on the O()-
efciency of the four ArrayDeque operations?

a) All four operations are less efcient than any of the stack or queue operations.
b) Some of the operations are less efcient than stack/queue, but some are just as efcient.
c) Te deque operations are equally efcient as the stack and queue operations.
d) Te relative efciency depends on the exact state of the deque—sometimes operations are more

efcient, sometimes less.

21. Which data structure is being used any time a C/C++ program is executing?

a) Stack
b) Qeue
c) Deque
d) Set

22. Most modern programming languages use a variety of brackets
()
{ }
[]
< >

to mark beginnings and endings. In general, there are a few common expectations about these should
“behave”:

i. Every closing symbol must be “matched” by a preceding opening symbol, and every opening symbol
must be matched by a following closing symbol So >< isn’t acceptable, unless it’s part of <><>.

ii. Usually, the brackets contain other text. So <int> is much more common than <>.
iii. Brackets can contain other pairs of brackets, but not single brackets. Tat is, brackets can be nested

like {()} but can’t be interleaved like {(}).

Write pseudocode that uses this chapter’s data structures to determine whether the source code for a C++
program contains syntactically correct brackets. Use the function char readChar() which magically
returns the next character from input, and use the function bool isBracket(char) which tells you
whether or not a character is one of the 8 bracket characters (you do not have to write these functions! Just
call them as needed). Assume that readChar() returns NULL when the end of input is reached. You may
also use bool isOpen(char) and bool isClosed(char) to identify what kind of bracket you have.
Note that you really don’t care about the non-bracket characters, and you’re not worried about the syntax of
the code other than the brackets. Your code should print “yes” if the brackets are correct and “no” if they are
not. Your code should produce no other output.

23. Te book’s SLList data structure includes three variables: Node* head,
Node* tail, int n. If we implement Stack using SLList, what values
correspond to an empty Stack?

a) n == 0

b) head == tail == NULL

c) Either a or b
d) Both a and b

24. Here’s the book’s implementation of Stack.push(x) (for a singly-linked list):

T push(T x) {
 Node *u = new Node(x);
 u->next = head;
 head = u;
 if (n == 0)
 tail = u;
 n++;
 return x;
 }

What would be the efect of exchanging the two highlighted lines?

a) Te code would no longer compile.
b) Te program would crash at some point during the execution of push().
c) Te program would crash afer some subsequent call to pop().
d) Tis would introduce a memory leak.
e) Both c and d.

25. Again, here’s the book’s implementation of Stack.push(x):

T push(T x) {
 Node *u = new Node(x);
 u->next = head;
 head = u;
 if (n == 0)
 tail = u;
 n++;
 return x;
 }

What would be the efect of deleting the two highlighted lines?

a) Te code would no longer compile.
b) Te program would crash at some point during the execution of push().
c) Te program would crash afer some subsequent call to pop().
d) Tis would introduce a memory leak.
e) Tis would have no efect on Stack operations.

26. Here’s the book’s implementation of Queue.add():

bool add(T x) {
 Node *u = new Node(x);
 if (n == 0) {
 head = u;
 } else {
 tail->next = u;
 }
 tail = u;
 n++;
 return true;
 }

What would be the efect of deleting the highlighted code?

a) Te code would no longer compile.
b) Te program would crash at some point during the execution of add().
c) Te program would crash during some subsequent call to remove().
d) Tis would introduce a memory leak.
e) Tis would have no efect on Queue operations.

27. Which of these represent an “empty” doubly-linked list?

a) A single node, dummy, with prev and next set to NULL.
b) A single node, dummy, with prev and next pointing to dummy.
c) A single node, dummy, with the list’s head and tail pointers both pointing to

dummy.
d) An empty node.
e) A node, dummy, with prev and next both pointing to another node containing the

value 0.

28. Here’s the book’s addBefore() implementation:

1 Node* addBefore(Node *target, T value) {

2 Node *toInsert = new Node;

3 toInsert->x = value;

4 toInsert->prev = target->prev;

5 toInsert->next = target;

6 toInsert->next->prev = toInsert;

7 toInsert->prev->next = toInsert;

8 n++;

9 return toInsert;

10 }

Which of these pairs of lines can be exchanged without afecting the list’s behavior?

a) 4 and 5
b) 5 and 6
c) 6 and 7
d) Both a and b
e) Both a and c

29. Te book has a nice picture (Figure 3.3) of how to add a node to a doubly-linked
list, but it doesn’t have a picture for the remove(Node *) operation. Draw that
picture in a style similar to Figure 3.3. Instead of light gray lines and black lines, use
doted lines to represent things that exist only before the operation is carried out
and solid lines to represent things that exist afer the operation is completed.

30. Design and implement an SLList method, secondLast(), that returns the second-
to-last element of an SLList. (Tat is, if the list contains 10 elements, this method
should return the value of the 9th element.) Do this without using the member variable,
n, that keeps track of the size of the list. How should this method behave if the list
contains 0 or 1 element?

31. Implement SLList.set(i,x).

32. Write a method, truncate(i), that truncates a DLList at position i. Afer executing
this method, the size of the list will be i and it will contain only the elements at indices
0,..., i-1. Te return value is another DLList that contains the elements at indices
i,...,n-1. Tis method should run in O(min(i, n-i) time.

	Readings
	Study Tactics
	Main Topics
	C++ Concepts
	Data Structures Concepts

	Exam Structure, Roughly

