
CISC 3130
Exercise 2

Working with Array-Based Lists
In this exercise:

• you will work with the book’s data structures implementations
• you will refresh (and perhaps deepen) your C++ object-oriented knowledge
• you will refresh your ability to write and use makefles

Introduction
In this exercise, we’ll work with the book’s code for several of the data structures discussed in this 
chapter. If you haven’t already, you can download the book’s C++ code here. By the way—the book’s 
C++ classes are, unfortunately, NOT good examples of well-writen C++ code! 

Measuring some (More) Performance
Using the book’s ArrayDeque class, write some code—similar to code in Exercise 1—that creates an 
ArrayDeque of int, adds 5000 elements at the front, removes 2500 elements from the rear, adds 
5000 elements at the rear, and removes 7500 elements from the front. Measure the time it takes to 
execute that set of operations.

Note that your code will depend on at least two classes—ArrayDeque as well as the array class that 
ArrayDeque depends on. It will save a lot of time to write a quick makefle. Remember to use a 
variable like

CXXFLAGS = -Wall -std=C++11

so that you can invoke g++ as g++ $(CXXFLAGS).

Improve the Implementation
Now, write a class SmartArrayDeque that is derived from ArrayDeque. Tis class should have the 
following characteristics:

• It should have convenience methods addFront(), removeFront(), addRear(), and 
removeRear(). 

• Instead of copying elements with for loops, it should use std::copy() wherever possible.

Modify your main program from above to time the same operations using a SmartArrayDeque 
object. You’ll very likely need to modify your makefle to accommodate your SmartArrayDeque 
defnition.

Hopefully your improved implementation is actually faster. What happens if you double the number 
of elements your code works with? Do the time savings also double?

 

http://opendatastructures.org/ods-cpp.tgz

	Introduction
	Measuring some (More) Performance
	Improve the Implementation

