
CISC 3130
Exercise 1

Choosing Data Structures
In this exercise:

• you will be introduced to C++ libraries for timing, especially of code execution
• you’ll do some practical, non-theoretical comparisons of diferent data structures
• you’ll look closely at the available documentation and learn to extact useful information from 

it

Introduction
We’ll be talking throughout the semester about the relative efciency of diferent algorithms and data 
structures. Mostly, those discussions will be abstract—in the sense that we won’t be talking about any 
particular implementation running on any particular computer. But it’s also useful to be able to 
compare implementations on your actual computer, if for no other reason to provide some sense that 
our abstract discussions do have application in the real world.

Te C++11 chrono library contains a rich infrastructure for dealing with time. For example, this litle 
program times the execution of some code and outputs the result in milliseconds.

#include <iostream>
#include <chrono>
 
using namespace std;
 
int main(){

  auto start = chrono::steady_clock::now();

  // code to time here

  auto end = chrono::steady_clock::now();
  auto diff = end - start;

  cout << chrono::duration <double, milli> (diff).count() << " ms" << endl; 
}

(Read this for a litle more background and the original code.)

Measuring some Performance
So, let’s use this to get a sense of what some the C++ library data structures can do. Declare a set of 
ints: set<int> intset;

(Note that we’re using namespace std.) Put the values 0–10,000 into the set (say, with a for 
loop)—and measure the total time that takes. Ten fnd each of those values in the set, and measure 
the total time of those fnd operations. Which took longer? How much longer? Based on this 
observation, sets are best used in applications where you expect more of which operation? Is that a 
common situation?

https://solarianprogrammer.com/2012/10/14/cpp-11-timing-code-performance/


What about trying to fnd values that aren’t in the set? Do you expect that to be more or less efcient 
than fnding values that are in the set? Experiment with 10,000 fnd operations—maybe time 10,000 
searches for -5, then try 10,000 searches for negative numbers, then 10,000 searches for numbers 
greater than 10,000. What patern do you see, if any? Do your teammates, using diferent devices, see 
the same paterns? How do your timings compare to your teammates’?

Comparing Data Structures
Let’s do the same thing with stack—time 10,000 adds and 10,000 removes. Before you run the code, 
make a hypothesis about what will happen: how will these timings compare to the set timings? Will 
stack add be faster, slower, or about the same as stack remove? When you have a theory, run the 
code and see what happens. 

Probably, you will see that one of the two structures is considerably more efcient than the other. 
Does that mean you should always choose that structure?

Now do this one more time, with unordered_set. Based on what the book says, how do you expect 
it to compare to set? Run the code and get the timings; were you right? What about searching for 
elements that aren’t present? How does that compare, both to searching set for missing elements 
and to searching unordered_set for elements that are present?

Reading the Documentation
Being able to read the documentation efectively is key to being able to use the C++ libraries well. 
Revisit the set page. Where on this page is the information that tells you that set<int> intset is 
a legitimate declaration?

Te page also says, “Search, removal, and insertion operations have logarithmic complexity.” What 
does that mean? Is that good, or bad, orr...?

Scroll down, and click on the link to the documentation for the insert() method. How many 
diferent versions of insert() does C++11 have? Which one did you use in your code?

Read about the “complexity” of the diferent versions. Which version is generally most efcient? In 
what situations are versions 5-6 going to be preferable? Why? Write some code that tests that 
hypothesis.

http://en.cppreference.com/w/cpp/container/set

	Introduction
	Measuring some Performance
	Comparing Data Structures
	Reading the Documentation

