
CISC 3130
Exercise 0

Introduction to the STL
In this exercise:

• you will be introduced to the C++ Standard Template Library
• you will be introduced to the idea of generic code and the techniques for using /writing

generic code in C++
• you will compile, execute, and analyze code writen using the STL

Introduction
Chapter 18 of the C++ Annotations book begins

Te Standard Template Library (STL) is a general purpose library consisting of containers,
generic algorithms, iterators, function objects, allocators, adaptors and data structures.
Te data structures used by the algorithms are abstract in the sense that the algorithms
can be used with (practically) any data type.

Tat is a LOT of nouns. Over the course of the semester, you’ll start to get a sense of what most of
these things are. Today we’ll spend a litle time with containers/data structures, iterators, and generic
algorithms.

Generic Code

Most of these concepts are part of the general idea of generic code. Te word “generic” has a few
meanings in English—“predictable and unoriginal,” “having no brand name,” “relating to a group of
things; not specifc.” In some sense, the idea of generic code draws on all of these: in essence, generic
code is code that doesn’t rely on any particular type of data.

Te most fundamental element of C++ that supports generic code is the template. You’ve probably
read and/or writen template-based code before now; Chapter 21 of C++ Annotations has a good
treatment and useful guidelines; you may also want to review an introductory C++ textbook’s
discussion of templates.

Containers
Chapter 12 of C++ Annotations has a detailed summary of the essential containers provided in the
STL. As the book says,

Te datatypes discussed in this chapter are all containers: you can put stuf inside them,
and you can retrieve the stored information from them.Te interesting part is that the
kind of data that can be stored inside these containers has been lef unspecifed at the
time the containers were constructed. Tat's why they are spoken of as abstract
containers. Abstract containers rely heavily on templates, covered in chapter 21 and
beyond. To use abstract containers, only a minimal grasp of the template concept is
required.

https://fbb-git.github.io/cppannotations/cppannotations/html/cplusplus21.html#TEMPLATES
https://fbb-git.github.io/cppannotations/cppannotations/html/cplusplus12.html#l226

Let’s start with the array container discussed in 12.4.1 (and summarized in this table).

Compile and run the following short program (copy-and-paste if you like). Make sure you use the
C++11 standard when you compile; e.g. $g++ -std=c++11 exercise0.cpp

#include <string>
#include <iostream>
#include <algorithm>
#include <array>

int main()
{
 std::array<int, 10> testArrayInt = {10, 9, 8, 1, 2, 3, 6, 5, 4, 7};
 std::array<std::string, 2> testArrayString =

{std::string("dog"), "cat"};

 for(const auto& s: testArrayInt)
 std::cout << s << ' ';

 for(const auto& s:testArrayString)
 std::cout << s << ' ';

 std::cout << std::endl;
}

Syntactically, how can you tell there are templates involved? When you “instantiate” the array
template, what information do you need to provide?

If you’ve not seen this kind of for loop in C++ before, it’s called a “ranged” for loop (it’s similar to
the “enhanced” for loop in Java). What do you suppose the word auto means?

What if we decide we want to use a container that doesn’t have a fxed size? Two options are the
vector and list containers. Change the two declarations to use one or both of these containers (be
sure to #include the appropriate headers). Does the program compile and run?

Now change the type of the frst container (testArrayInt) so that it contains doubles. Change a
couple of the initial values to be doubles, too (like 10.5, 9. 8.2, …). Does the program compile
and run?

Iterators
Te ranged for loop seems magically to know it’s supposed to start at the “beginning” of the array
and stop at the “end.” If we were using the C++ built-in array type, this might not be surprising—we
could imagine the compiler being able to fgure that out. But the loop also works on these other
containers—array, list, vector—even though these things might have very complicated internal
structure. What’s going on?

Te key is the idea of an iterator. As the book says in 18.2, “Iterators are objects acting like pointers.”
Essentially, iterators “point” to the invidual elements contained by a container—and thanks to

http://www.cplusplus.com/reference/vector/vector/
http://www.cplusplus.com/reference/list/list/
http://www.cplusplus.com/reference/array/array/

operator overloading, we can use the dereference operator * to “get our hands” on the element that
an iterator is “pointing” to. More importantly, iterators also give us the next element, through the ++
operator. Iterators, then, let us “look at” all the elements in a container even if we don’t know how a
container is organized internally.

Te containers in the STL provide several methods that give us access to iterators for their contents.
In particular the methods begin() and end() return iterators that “point” to the frst element and
the “past-the-end” element. (So we know that we’ve seen everything in a container if our iterator ==
end().) And these are what the ranged for loop automatically uses in our code.

Iterators have all kinds of uses in the STL. For example, add these two lines before the output (change
the name of the “array” variables if you’ve already done so in your code):

 sort(testArrayInt.begin(), testArrayInt.end());
 sort(testArrayString.begin(), testArrayString.end());

What happens when you run the program? What is the default behavior of this sort() function?

Add a litle snippet of code that uses the max_element() function to print the value of a maximum
value of one of these containers.

Generic Algorithms
sort() and max_element() are two examples of the many generic algorithms provided by the STL.
“Generic” means “doesn’t rely on any particular type of data”—so is calling these “generic
algorithms” accurate? If so, how do these two functions avoid the need for specifc type names? Is
there any requirement for the element-types in the containers being processed?

Find something in this algorithms library that will make it easy to compute the sum of the elements
in testArrayInt. Write that code snippet and make sure it runs.

http://en.cppreference.com/w/cpp/algorithm
http://en.cppreference.com/w/cpp/algorithm/max_element

	Introduction
	Generic Code

	Containers
	Iterators
	Generic Algorithms

